
PRINCIPLES OF ANALYSIS
TOPIC 1: SYMBOLIC LOGIC

PAUL L. BAILEY

1. Propositions

A proposition is a statement which is either true or false, although we may not
know which. Propositions are denoted by lowercase letters such as p, q or r. The
truth or falsity of the proposition is called its truth value, and the two possible
truth values are labeled T for TRUE and F for FALSE. The truth value of the
proposition p is denoted V(p).

For example, the statement “The sun rises in the east” is a proposition, and if
we wish to label this statement p, we write

p = “The sun rises in the east”.

Similarly, we may write

q = “The sun rises in the west”.

In this case, V(p) = T and V(q) = F.

2. Logical Operators

Propositions may be modified and combined by the use of logical operators, which
take one or more propositions and create a new one which has its own truth value.
The resultant truth value is uniquely determined by the proposition(s) operated
upon and the operator(s) used. Operators which accept one input are called unary
operators, and operators which accept two inputs are called binary operators.

The behavior of each logical operator is determined by a truth table. The truth
table lists all possible combinations of the truth values of the inputs, and states the
operator’s output for each combination of inputs.

The simplest useful logical operator is the negation operator NOT (¬), which
operates on a single proposition and reverses its truth value. Thus

¬(“Pigs are mammals”) = “Pigs are not mammals”.

Date: August 24, 2005.

1



2

The action that NOT has on the truth value of a proposition is defined by its
truth table, which lists the possible truth values of a proposition p side by side with
the truth value of ¬p:

p ¬p
T F
F T

Table 1. NOT Truth Table

Assertion 1. If p is any proposition, then

V(¬(¬p)) = V(p)

.

Proof. If p is TRUE, then ¬p is FALSE, and so ¬(¬p) is TRUE. If p is FALSE,
then ¬p is TRUE, and so ¬(¬p)) is FALSE. �

The next logical operator we consider is the conjunction operator AND (∧). The
proposition p∧q is true only when both p and q are true propositions. For example,
if p = “Pigs are mammals” and q = “Pigs fly”, then p ∧ q may be interpreted as
“Pigs are flying mammals”. The AND operator is defined by a truth table which
lists all possible combinations of the truth values of p and q:

p q p ∧ q
T T T
T F F
F T F
F F F

Table 2. AND Truth Table

The disjunction operator OR (∨) returns a value of TRUE whenever either
proposition it operates upon is true, and therefore is defined by:

p q p ∨ q
T T T
T F T
F T T
F F F

Table 3. OR Truth Table

Thus if let p and q be as above and we assume that pigs are mammals who
cannot fly, we have V(p) = T, V(q) = F, V(p ∧ q) = F and V(p ∨ q) = T.

At this point we adopt the convention that the NOT operator takes “binds
tighter” than any other operator, that is, it takes precedence in the order of oper-
ations and applies only to the object on its immediate right. Thus ¬p ∧ q means
(¬p) ∧ q as opposed to ¬(p ∧ q). We are now ready for our first theorem.



3

Theorem 1. (DeMorgan’s Laws) For any two propositions p and q we have
(1) V(¬(p ∨ q)) = V(¬p ∧ ¬q);
(2) V(¬(p ∧ q)) = V(¬p ∨ ¬q).

Proof. The proofs of these assertions are truth tables in which each step is ex-
panded, and the columns corresponding to either side of the equalities above are
compared.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

�

If propositions are linked together to form new propositions via logical opera-
tors, the result may be called a composite proposition. Propositions which are not
presented as composites are known as atomic propositions, or atoms. It is critical
to realize that the propositional calculus we are developing cannot tell us anything
about the truth or falsity of atoms. However, if we know the truth value of atoms
prior to applying the propositional calculus to some composite of them, it will tell
us the truth value of that composite.

The proof of DeMorgan’s Laws points out that even complicated composites
have corresponding truth tables which relate the possible truth values of potentially
unknown propositions to the truth value of the composite. In particular, suppose
we do not know the truth values of p and q, and we let r = ¬(p∧q) and s = ¬p∨¬q.
Then V(r) = V(s) regardless of the meaning of p and q.

Corollary 1. The disjunction operator OR may be defined in terms of the negation
operator NOT and the conjunction operator AND as

V(a ∨ b) = V(¬(¬a ∧ ¬b)).

Proof. Apply Assertion 1 to DeMorgan’s First Law (take the NOT of both sides).
�

We may think of the NOT operator as distributing into the AND operator, but
when it does so it changes AND to OR. An analogous statement applies to the OR
operator. However, we do have a actual distributivity of AND over OR and of OR
over AND.



4

Theorem 2. (Distributive Laws) For any two propositions p and q we have
(1) V((p ∨ q) ∧ r) = V((p ∧ r) ∨ (q ∧ r));
(2) V((p ∧ q) ∨ r) = V((p ∨ r) ∧ (q ∨ r)).

Proof. The tables tell the story.

p q r p ∨ q (p ∨ q) ∧ r p ∧ r q ∧ r (p ∧ r) ∨ (q ∧ r)
T T T T T T T T
T T F T F F F F
T F T T T T F T
T F F T F F F F
F T T T T F T T
F T F T F F F F
F F T F F F F F
F F F F F F F F

p q r p ∧ q (p ∧ q) ∨ r p ∨ r q ∨ r (p ∨ r) ∧ (q ∨ r)
T T T T T T T T
T T F T T T T T
T F T F T T T T
T F F F F T F F
F T T F T T T T
F T F F F F T F
F F T F T T T T
F F F F F F F F

�

Intuitively we realize that AND and OR are commutative operators, which is to
say that p∧ q means the same thing as q ∧ p and p∨ q is just another way of saying
q ∨ p. Thus we are content when we notice that our truth tables agree. It is also
easily verified that AND and OR are associative operators, and we leave it to the
reader to verify this.

Assertion 2. (Commutativity Laws) For any two propositions p and q we have
(1) V(p ∧ q) = V(q ∧ p);
(2) V(p ∨ q) = V(q ∨ p).

Assertion 3. (Associativity Laws) For any propositions p, q, and r we have
(1) V((p ∧ q) ∧ r) = V(p ∧ (q ∧ r));
(2) V((p ∨ q) ∨ r) = V(p ∨ (q ∨ r)).



5

Commutativity and associativity do not hold for all of the commonly used logical
operators. This brings us to the implication operator IMP (⇒), where we read p ⇒ q
as “p implies q” or as “if p, then q”. We have a name for the components of an
implication: p is called the hypothesis and q is called the conclusion. One may be
surprised by the truth table of this logical operator the first time it is encountered:

p q p ⇒ q
T T T
T F F
F T T
F F T

Table 4. IMP Truth Table

A false proposition implies anything one wishes it to imply. Thus the proposition
“If pigs fly, then the earth if flat” is true whether or not the earth is indeed flat.
Just to get our feet wet with the implication operator, we assert the following,
which may be verified directly from the truth tables.

Assertion 4. If p and q are propositions, then
(1) p ⇒ (p ∨ q);
(2) (p ∧ q) ⇒ p.

Theorem 3. The implication operator IMP may be built from the negation operator
NOT and the conjunction operator AND operators since

V(p ⇒ q) = V(¬(p ∧ ¬q)).

At this point you may be asking why we chose for p ⇒ q to be true even when p
and q are both false. The others choices in the truth table for implication are easily
justified by common sense, but why this one? The answer lies in the truth table
for the equivalence operator and the theorem which follows it, a theorem which we
very much want to be true and which depends on this choice.

The equivalence operator IFF (⇔) signifies logical equivalence, so that p ⇔ q is
read “p is logically equivalent to q” or “p if and only if q”. This is the operator
that answers the question “do p and q have the same truth value?”

p q p ⇔ q
T T T
T F F
F T F
F F T

Table 5. IFF Truth Table

The following theorem justifies our double sided arrow notation.



6

Theorem 4. If p and q are propositions, then

V((p ⇒ q) ∧ (p ⇒ q)) = V(p ⇔ q).

Proof. We have a proof by truth table.

p q p ⇒ q q ⇒ p (p ⇒ q) ∧ (q ⇒ p) p ⇔ q
T T T T T T
T F F T F F
F T T F F F
F F T T T T

�

Theorem 5. The equivalence operator IFF may be constructed from the negation
operator NOT and the conjunction operator AND because

V(¬(p ∧ ¬q) ∧ ¬(¬p ∧ q)) = V(p ⇔ q).

At this point we may abandon our V(p) notation in preference to usage of the
IFF operator, for it is clear that for any two propositions p and q, then V(p) = V(q)
is the logical equivalent of p ⇔ q. For example, the above claim could be written

V((¬(p ∧ ¬q) ∧ ¬(¬p ∧ q)) ⇔ (p ⇔ q)) = T,

or simply
(¬(p ∧ ¬q) ∧ ¬(¬p ∧ q)) ⇔ (p ⇔ q),

since asserting the above is taken to mean asserting that it is true.

3. Tautologies and Contradictions

In general, we need to know the truth value of the atomic components of a com-
posite proposition in order to determine the truth value of the composite. However,
this is not always the case. If a given proposition is always true regardless of the
truth values of its atomic components, it is called a tautology. On the other hand,
if a proposition is always false it is called a contradiction. Tautologies and con-
tradictions are called independent of the truth values of the component atoms. A
proposition which is neither a tautology nor a contradiction is called a dependent,
or indeterminate proposition.

Examples of tautologies:
(1) p ∨ ¬p
(2) ¬(p ∧ ¬p)
(3) p ⇔ ¬(¬p)
(4) ¬(p ∨ q) ⇒ (p ⇒ q)
(5) Demorgan’s Laws
(6) Distributive Laws



7

Any two tautologies may be combined via the AND operator to form another
tautology. Indeed, the tautology

(p ∨ ¬p) ∧ ¬(p ∧ ¬p),

which states that either p is true or ¬p is true, but not both, is often considered the
basis of Western logic. Notice that the “but not both” part may be derived from
the p ∨ ¬p part by an application of DeMorgan’s Law.

Examples of contradictions:
(1) p ∧ ¬p
(2) p ⇒ ¬p
(3) (p ⇔ (p ∧ q)) ∧ (p ⇒ q)

Similarly, any two contradictions may be combined via the OR operator to form
another contradiction (they may also be combined via the AND operator to form
another contradiction, but this is a weaker statement).

Examples of indeterminate propositions:
(1) (p ⇒ q) ⇔ (p ∧ q)
(2) (p ∨ ¬q) ⇒ (p ∨ ¬p)
(3) p ⇒ q

In a certain sense, mathematics is the process of discovering tautologies. How-
ever, the superstructure of most theorems is of the indeterminate form p ⇒ q. Why,
then, is it difficult to prove theorems? It may seem that one simply needs to deter-
mine the truth values of p and q and verify the truth or falsity of the theorem with
a glance at the truth table for implication. This is far from the case; an implication
is a description of the relationship between p and q, and not of their individual
truth values. In fact, proving an implication involves verifying that all four rows of
the truth table for implication are satisfied (although such proofs rarely take this
explicit form).

Now we turn to a pair of constructions which are critically important for aspiring
mathematicians to grasp. Suppose that p and q are propositions, and consider the
implication p ⇒ q. The converse of this implication is the proposition q ⇒ p,
whereas its contrapositive is the proposition ¬q ⇒ ¬p.

Assertion 5. The contrapositive of an implication is logically equivalent to it. The
converse of an implication is logically independent of it.

Proof. To explore the logical relations between any two propositions a and b, we
construct the truth table of a ⇔ b. If this truth table contains nothing but T’s in
the last column, then a and b are logically equivalent. If this truth table contains
nothing but F’s in the last column, then a and b are logically incompatible. If this
truth table contains some T’s and some F’s in its last column, then a and b are
logically independent. We leave it as an exercise to determine what a and b should
be in these cases and to complete the proof. �



8

An example is in order. Let p be the proposition “The egg falls fifty feet onto
cement” and q be the proposition “The egg breaks”. Additionally, we assume that
when an egg falls fifty feet onto cement, then it breaks, so that we are assuming
that p ⇒ q is true. Now it is clear that if the egg is not broken, it could not have
fallen fifty feet onto cement. This is nothing more than the claim ¬q ⇒ ¬p. On
the other hand, it is possible to break an egg without dropping it fifty feet onto
cement; just because it is broken, we may not accurately conclude that it did drop
fifty feet onto cement. So the converse q ⇒ p is not necessarily true.

It is intuitively clear that the converse of an implication is not logically equivalent
to the implication, and yet when immersed in the abstract world of mathematics,
surrounded by definitions and related ideas which have not previously been con-
templated, the distinction between an implication and its converse may seem to
blur. Thus it is a good idea to keep in mind “the converse is not necessarily true”
(even when the implication is).

On the other hand, many proofs depend on the contrapositive. It is often easier
to prove that ¬q ⇒ ¬p than p ⇒ q; but if we can prove that ¬q ⇒ ¬p, we get
p ⇒ q for free.

A related idea is that of proof by contradiction. Here we wish to prove some
proposition a, where a may or may not be in the form of an implication. The
roundabout method of proof by contradiction assumes that ¬a is true, and arrives
at a conclusion which is a proposition known to always be false, in other words,
a contradiction. Thus the assumption that led to the contradiction (¬a) must be
false, proving that a is true. This technique is invaluable in group theory and
topology.

Often one finds proofs that masquerade as proofs by contradiction but are ac-
tually proofs by contrapositive. That is, one wishes to prove that p ⇒ q, and so
assumes that p ∧ ¬q is true, and arrives at a contradiction, without ever using the
assumption p. This is not the preferred method.

4. Generation of Operators

In this section we introduce primitive logical operators which do not arise in
ordinary language but which, nonetheless, arise from definitional truth tables which
differ from those we have already encountered. These are XOR, NOR, and NAND.

The exclusion operator XOR (l) stands for exclusive OR and means a or b, but
not both.

a b a l b
T T F
T F T
F T T
F F F

Table 6. XOR Truth Table

Assertion 6. The XOR operator is the negation of IFF, i.e.,

(a l b) ⇔ ¬(a ⇔ b).



9

The alternate denial operator NOR (↑) means “neither a nor b”.

a b a ↑ b
T T F
T F F
F T F
F F T

Table 7. NOR Truth Table

Assertion 7. The NOR operator is the negation of OR, i.e.,

(a ↑ b) ⇔ ¬(a ∨ b).

The joint denial operator NAND (↓) means “possibly a and possibly b, but not
both”.

a b a ↓ b
T T F
T F T
F T T
F F T

Table 8. NAND Truth Table

Assertion 8. The NAND operator is the negation of AND, i.e.,

(a ↓ b) ⇔ ¬(a ∧ b).

A collection of operators generates another operator if the truth table of gener-
ated operator can be derived through a combination of the generators. For example,
we have already seen that NOT and AND together generate OR, IMP, and IFF.
Since XOR is NOT IFF, NOR is NOT OR, and NAND is NOT AND, we can see
that NOT and AND generate XOR, NOR, and NAND.

Theorem 6. The operators NOT, AND, OR, IMP, IFF, XOR, and NAND may
be derived from NOR.

Proof. It suffices to show that NOT and AND may be written in terms of NOR.
The definition of NOR and DeMorgan’s Law gives us that

(1) ¬a ⇔ (a ↑ a);
(2) (a ∧ b) ⇔ (¬a ↑ ¬b).

�



10

Theorem 7. The operators NOT, AND, OR, IMP, IFF, XOR, and NOR may be
derived from NAND.

Proof. It suffices to show that NOT and AND may be written in terms of NAND.
The definition of NAND and a glance at the truth tables gives us that

(1) ¬a ⇔ (a ↓ a)
(2) (a ∧ b) ⇔ ¬(a ↓ b)

�

There are four possible logical operators of a single proposition, and we have
only discussed the identity operator (V) and NOT. There are also the constant
operators whose value is always T or F. Notice that a constant operator cannot be
generated from NOT because NOT NOT is the identity, NOT NOT NOT is NOT,
etc. We use this fact in our final theorem.

Theorem 8. The operators NOR and NAND are the only binary operators which
are sufficient by themselves to generate NOT, AND, OR, IMP, IFF, XOR, NOR,
and NAND.

Proof. In order for a generic binary operator GEN (t) to generate NOT, a t b must
be false when both a and b are true, for otherwise we can never achieve anything
but true in the first row of a truth table of a composite proposition whose only
operator is GEN. Similarly, a t b must be true whenever both a and b are false.
Thus we have a partial truth table for GEN.

p q p t q
T T F
T F V1

F T V2

F F T

Now suppose that GEN is not a commutative operator. If V1 = T and V2 = F,
then (p t q) ⇔ ¬(q) is a tautology, and if V1 = F and V2 = T, then (p t q) ⇔ ¬(p)
is a tautology. In either case, GEN may be constructed from NOT. However, NOT
cannot generate a constant operator of a single atom such as p∧¬p, which is always
false, and thus NOT cannot generate AND.

Thus for GEN to generate the other logical operators, it must be commutative
so that V1 = V2 = V. If V = T, then GEN is NAND, and if V = F, then GEN
is NOR. �

There are sixteen possible truth tables resulting from combinations of two propo-
sitions, and we have only mentioned seven of them. The reader is welcomed to
explore the possibilities inherent in the others.



11

5. Exercises

Exercise 1. Determine the truth table of the following composite propositions and
state whether they are tautologies, contradictions, or indeterminate.

(a) (p ∨ q) ⇒ (p ∧ q)
(b) (p ∧ q) ∨ (p ⇒ q)
(c) (p ⇒ q) ⇒ p
(d) p ⇒ (q ⇒ p)
(e) (p ⇒ q) ⇒ q
(f) p ⇒ (q ⇒ p)
(g) (p ⇒ q) ⇒ r
(h) p ⇒ (q ⇒ r)
(i) ((p ⇒ q) ∧ (q ⇒ r)) ⇒ (p ⇒ r)
(j) (p ∧ q) ⇔ (p l q)
(k) (p ↓ q) ⇒ (p ∨ q)

Exercise 2. Complete the proof of Assertion 5.

Exercise 3. Write a logically equivalent statement using NOT, AND, and OR.
(a) ¬(p ⇒ q)
(b) (p ⇒ q) ⇒ r

Exercise 4. Use truth tables to prove the following assertions.
(a) (a l b) ⇔ ¬(a ⇔ b)
(b) (a ↑ b) ⇔ ¬(a ∨ b)
(c) (a ↓ b) ⇔ ¬(a ∧ b)

Exercise 5. Show that the logical operators NOT and OR are sufficient to generate
AND, IMP, IFF, XOR, NOR, and NAND.

Exercise 6. Develop the truth tables for logical operators of one proposition other
than NOT. You should get three of these, and you will see that they may reasonably
be called identity, constant truth, and constant falsehood.

Exercise 7. Develop the truth tables for logical operators of two propositions other
than AND, OR, IMP, IFF, XOR, NOR, and NAND. You should get nine of these.
Give these new operators names. Relate them to the operators of one proposition
identity, constant truth, constant falsehood, and negation. Relate them to the
operators of two propositions AND, OR, IMP, IFF, XOR, NOR, and NAND.

Department of Mathematics and CSci, Southern Arkansas University
E-mail address: plbailey@saumag.edu


